AØ RF-Gun Cooling System

Presented by:

Danielle Hannah

Supervised by:

Maurice Ball Jamie Santucci

Danielle N. Hannah

- Born and raised in Marietta, Georgia
- Spelman College/North Carolina A&T
 - Dual Degree Engineering Program (DDEP)
 - B.A. Mathematics and B.A. Architectural Engineering
 - Rising Junior
- Summer Internships in Science and Technology (SIST)

AØ Experiment

- The AØ Photoinjector (AØPI) facility is a small research and development program section within the Accelerator Division (AD).
- An essential component of the overall AØPI is a Radio Frequency Electron Gun (RF-gun).
- The RF-gun is located in the south cave of the AØ building.
- This gun consists of cavities that are used to accelerate a beam of electrons.

Project Background

- The RF-gun emits heat.
- This poses a problem to the well-being of the machine and the physicists.
- Engineers of the Mechanical Support Department created a lowconductivity water (LCW) skid cooling system to keep the RF-gun at a consistent temperature.
- Within the next 5 years, a new RF-gun will be installed in the AØ north cave.
- The new RF-gun will use the same cooling system as the current gun.
- But before the installation occurs it must be assured that the current cooling system for the AØ PI RF-gun is up to par.

Project Description

- This presents how the AØ PI RF-gun skid system was characterized, improved, and documented over the course of a summer.
- In order to obtain these goals the following steps had to be executed:
 - Outlined spreadsheet acting as a project timeline,
 - Development of a detailed system schematic,
 - Refinement of the system's appearance,
 - Completed fluid analysis throughout system.

System Schematic

Draft #1

Final Draft

Draft #1

Final Draft

System Updates

Re-Labeling

Original Labels

Original Labels

New Labels

New Labels

Flow Rate Measurements

Section 1: Q = 30.0 gpm

Section 3: Q = 5.5 gpm

Q = 29.9 gpm

Flow Fluid Analysis

Bernoulli's Principle

- The most useful single equation in fluid mechanics.
- States that for an inviscid flow, an increase in the speed of the fluid occurs simultaneously with a decrease in pressure.

$$z_1 + \frac{144 p_1}{\rho_1} + \frac{v_1^2}{2g} = z_2 + \frac{144 p_2}{\rho_2} + \frac{v_2^2}{2g} + h_L$$

Equation 1

Fluid Flow Analysis

Bernoulli's Equation (Equation 1) can be expressed as:

$$P_1 - P_2 = \frac{\rho}{144} + \frac{v_2^2 - v_1^2}{2g} + h_L$$
 Equation 2

in order to calculate the change in pressure from P_1 to P_2 .

$$h_L = \frac{0.00259\,KQ^2}{d^4} \quad \text{Equation 3}$$
 [h_=head loss (ft), Re=Reynold's number, K=resistance coefficient, Z=elevation (ft), P=pressure (psi), p=weight density (lb/ft³), v=velocity (ft/s), μ =absolute viscosity (cP), d=diameter (in), D=diameter (ft), f=friction factor, Q=rate of flow
$$K = \frac{fL}{D} \quad \text{Equation 4}$$
 Equation 5
$$R_e = \frac{50.6Q\rho}{d\mu} \quad \text{Equation 5}$$

In efforts to minimize errors, the entire system was separated into 13 sections (A-M).

(gpm), L=pipe length (ft), g=acceleration of gravity (ft/s²)]

Sections A-G, L-M

Sections G-L

Pressure Drop Calculation: Section A

Given:

- $f_T = 0.019$
- $\mu = 1.7 \text{ cP}$
- $\rho = 62.42 \text{ lb/ft}^3$
- v = 2.87 ft/s

Measured:

- d = 0.17225 ft
- $Z_2 = 9.833 \text{ ft}$
- $Z_1 = 0$ ft
- L = 69.5 ft
- Q = 30 gpm

Assumptions:

All fittings are standard 45 or 90 elbows.

Calculations:

•
$$R_e = \frac{50.6}{2.067in} * \frac{30gal}{min} * \frac{62.42lb}{ft^3} * \frac{1}{1.7cP} = \frac{94753.6}{3.5139} = 2.7 \times 10^4$$

• f = 0.026

•
$$K = \frac{0.026*69.5 ft*12in}{2.067 in*ft} = \frac{21.684}{2.067} = 10.490$$

$$\rightarrow$$
 45 = 16f_T \longrightarrow 2*16*0.019 = 0.608

$$\rightarrow$$
 90 = 30f_T \longrightarrow 12 * 30 * 0.019 = 6.84

•
$$K_{TOTAL} = 0.608 + 6.84 + 10.49 = 17.95$$

•
$$h_L = 0.00259 * \frac{17.95 * 30 gal^2}{2.067 in^4 * min} = \frac{41.84}{18.254} = 2.292 \text{ ft}$$

$$\Delta P = \frac{62.42lb * ft^2}{144in^2 * ft^3}$$
 4.833 $ft + 0 ft + 2.292 ft$ = **5.256** psi

Total System Pressure Drop

- Section A = 5.256 psi
- Section B = 1.664 psi
- Section C = 0.893 psi
- Section D = 2.484 psi
- Section E = 1.398 psi
- Section F = 1.061 psi
- Section G = 5.174 psi
- Section H = 1.423 psi
- Section I = 1.134 psi
- Section J = 4.213 psi
- Section K = 4.444 psi
- Section L = 5.561 psi
- Section M = 3.909 psi

AØ RF-Gun Skid System gauge readings				
Pressure Gauge	psi		Temperature Gauge	F
P-01	33		T-01	53
P-02	13		T-02	36
P-03	7.5		T-03	51
P-04	62.5		T-04	50.5
P-05	9		T-05	65
P-06	7		T-06	45
P-07	140		T-07	60
P-08	137		T-08	58
P-09	19		T-09	44
P-10	9.5		T-10	82
P-11	5			
P-12	141			
P-13	135			
P-14	10			
P-15	54			
P-16	10			
P-17	22			
P-18	25			
P-19	22			

Section A + B + C +...K + L + M = 38.614 psi or 89.198 ft

Entire Gauge Pressure Drop = 134 psi or 309.54 ft

Project Timeline

Project Manager

AØ RF Gun Skid System

Summary

- A system schematic was perfected
- The entire system's temperature and pressure gauges were re-labeled
- The drop in pressure (calculated) throughout the system was compared with the drop in pressure (readings) to conclude that the gauge readings were inaccurate.
- > Thus, the current cooling system is not up to par.

Future Goals

- Develop a procedure to switch RF-gun cooling back and forth from North Cave to South Cave
- Develop instrumentation for the system to data log on ACNET, a control system that accelerators use.

Acknowledgments

- Maurice Ball, AD, Engineering, Mechanical Support Dept.
- Jamie Santucci, AD, Photoinjector
- Elmie Peoples-Evans, APC High Intensity Neutrino Source Dept.
- David Peterson, AD, Antiproton Source Dept.
- Dr. James Davenport, SIST founder
- Dianne Engram, Workforce Development & Resources, Equal Opportunity & Counseling, SIST director
- 2009 SIST interns, staff, and committee
- Fermi National Accelerator Laboratory

